Jordan form of a binomial coefficient matrix over Zp

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Binomial coefficient codes over W2)

Diaconis, P. and R. Graham, Binomial coefficient codes over GF(2) Discrete Mathematics 106/107 (1992) 181-188. In this note we study codes over GF(2) which are generated for given d and r by binary vectors of the form ((y), (,‘), , ({), . , (*‘i ‘)) (mod 2), 0 <i =Z d. We describe the weight enumerators of these codes and the numbers of codewords of weights 1 and 2. These results can be used to...

متن کامل

determinant of the hankel matrix with binomial entries

abstract in this thesis at first we comput the determinant of hankel matrix with enteries a_k (x)=?_(m=0)^k??((2k+2-m)¦(k-m)) x^m ? by using a new operator, ? and by writing and solving differential equation of order two at points x=2 and x=-2 . also we show that this determinant under k-binomial transformation is invariant.

15 صفحه اول

On Parity Check (0, 1)-Matrix over Zp

We prove that for every prime p ≤ poly(n) there exists a (0, 1)-matrix M of size tp(n,m) × n where tp(n,m) = O ( m+ m log n m log min(m, p) ) such that every m columns of M are linearly independent over Zp, the field of integers modulo p (and therefore over any field of characteristic p and over the real numbers field R). In coding theory this matrix is a parity-check (0, 1)-matrix over Zp of a...

متن کامل

Binomial Coefficient Predictors

For a prime p and nonnegative integers n, k, consider the set A (p) n,k = {x ∈ [0, 1, ..., n] : p|| ( n x ) }. Let the expansion of n + 1 in base p be n + 1 = α0p ν + α1p ν−1 + · · · + αν , where 0 ≤ αi ≤ p − 1, i = 0, . . . , ν. Then n is called a binomial coefficient predictor in base p(p-BCP), if |A (p) n,k| = αkp , k = 0, 1, . . . , ν. We give a full description of the p-BCP’s in every base p.

متن کامل

BINOMIAL - COEFFICIENT MULTIPLES OF IRRATIONALSTerrence

Denote by x a random innnite path in the graph of Pascal's triangle (left and right turns are selected independently with xed probabilities) and by d n (x) the binomial coeecient at the n'th level along the path x. Then for a dense G set of in the unit interval, fd n (x)g is almost surely dense but not uniformly distributed modulo 1.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 1987

ISSN: 0024-3795

DOI: 10.1016/0024-3795(87)90305-3